Extra figure
# Import modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import hypergeom
from scipy.stats import binned_statistic as binsta
from scipy.special import logsumexp
from util import *
import palettable as pal
clrx = pal.cartocolors.qualitative.Prism_10.mpl_colors
clr = tuple(x for n,x in enumerate(clrx) if n in [1,2,4,5,6])
clr2 = pal.cartocolors.sequential.agSunset_7.mpl_colors
import matplotlib.gridspec as gridspec
import matplotlib.patches as patches
import plotly.graph_objects as go
import plotly.tools as tls
from plotly.offline import plot, iplot, init_notebook_mode
from IPython.core.display import display, HTML
init_notebook_mode(connected = True)
config={'showLink': False, 'displayModeBar': False}
# CCP, the Coupon Collector's Problem
def ccp_sample(c,pool=60):
return len(set(np.random.choice(pool,c)))
# Draw overlap
def nab_sample(s,na,nb,pool=60):
sa = np.random.hypergeometric(s,pool-s,na)
nab = np.random.hypergeometric(sa,pool-sa,nb)
return nab
# Overlap between two PCRs of depth c and overlap s
def pcr_sample(c,s):
na = ccp_sample(c)
nb = ccp_sample(c)
return nab_sample(s,na,nb),na,nb
# Draw na and nb samples from two populations of size pool_a and pool_b, with true overlap s
# and return empirical overlap between na and nb
# note that this is basically the same as nab_sample, but with two different size pools!
def nab_sample_unequal(s,na,nb,pool_a,pool_b):
sa = np.random.hypergeometric(s,pool_a-s,na)
nab = np.random.hypergeometric(sa,pool_b-sa,nb)
return nab
def p_ccp(c, pool=60):
p = np.zeros([c+1,pool+1])
p[0,0] = 1;
for row in range(1,c+1):
for k in range(1,np.min([row+2,pool+1])):
p[row,k] = p[row-1,k]*k/pool + p[row-1,k-1]*(1-(k-1)/pool)
return p[-1,:]
def p_overlap(na,nb,nab,pool=60):
p_s = np.zeros(pool+1)
# reference: hypergeom.pmf(outcome, Total, hits, Draws, loc=0)
for s in np.arange(pool+1):
# p_sa is the probability that we'd get sa from the overlap (s), just in na draws of a
p_sa = hypergeom.pmf(np.arange(pool+1),pool,s,na)
# p_nab_given_sa is the probability of getting that nab, given sa
p_nab_given_sa = hypergeom.pmf(nab,pool,np.arange(pool+1),nb)
p_s[s] = np.dot(p_sa,p_nab_given_sa)
return p_s/np.sum(p_s)
def e_overlap(na,nb,nab,pool=60):
p_s = p_overlap(na,nb,nab,pool=pool)
return np.dot(np.arange(pool+1),p_s)
def credible_interval(na,nb,nab,pct=90,pool=60):
p_s = p_overlap(na,nb,nab,pool=pool)
cdf = np.cumsum(p_s)
ccdf = np.flipud(np.cumsum(np.flipud(p_s)))
# adjust for fractions vs percents; put everything as a fraction
if pct > 1:
pct = pct/100
cutoff = (1-pct)/2
# get the lower bound.
# it's the first index at which cdf ≥ cutoff
try:
lower = np.where(cdf >= cutoff)[0][0]
except IndexError:
lower = 0
# get the upper bound
# it's the first index at which ccdf ≥ 0.05
try:
upper = np.where(ccdf >= cutoff)[0][-1]
except IndexError:
upper=pool
expectation = np.dot(np.arange(pool+1),p_s)
# Sanity and indexing check: uncomment this line to see true tail probability ≤ 0.05
# print([cdf[lower-1],(1-ccdf[upper+1])])
return lower,expectation,upper
def p_nab_given_c(s,c,pool=60):
pna = p_ccp(c)
pnb = p_ccp(c)
nas = np.arange(1,len(pna))
nbs = np.arange(1,len(pnb))
p_gen = np.zeros([pool+1,pool+1,pool+1])
for na in nas:
p_sa = hypergeom.pmf(np.arange(pool+1),pool,s,na)
for nb in nbs:
pna_pnb = pna[na] * pnb[nb]
for nab in range(0,np.minimum(na,nb)):
p_nab_given_sa = hypergeom.pmf(nab,pool,np.arange(pool+1),nb)
p_nab_given_s = np.dot(p_sa,p_nab_given_sa)
p_gen[na,nb,nab] = p_nab_given_s * pna_pnb
return p_gen
def p_shat_given_sc(s,c,shat,pool=60):
masses = p_nab_given_c(s,c,pool=pool)
if np.sum(masses)<0.99:
print('Swapping to Monte Carlo')
return p_shat_given_sc_montecarlo(s,c,shat,pool=pool)
hist = binsta(np.ravel(shat),np.ravel(masses),statistic='sum',bins=(np.arange(pool+2)-0.5))
return hist
def p_shat_given_sc_montecarlo(s,c,shat,pool=60,n_mc=int(1e5)):
masses = np.zeros([pool+1,pool+1,pool+1])
for ii in range(n_mc):
nab,na,nb = pcr_sample(c,s)
masses[na,nb,nab] += 1
hist = binsta(np.ravel(shat),np.ravel(masses/n_mc),statistic='sum',bins=(np.arange(pool+2)-0.5))
return hist
def compute_all_estimates(pool=60):
shat = np.zeros([pool+1,pool+1,pool+1])
for na in range(1,pool+1):
for nb in range(1,pool+1):
for nab in range(0,np.minimum(na+1,nb+1)):
shat[na,nb,nab] = e_overlap(na,nb,nab,pool=pool)
return shat
def p_overlap_unequal(na,nb,nab,pool_a,pool_b):
# all loops are in terms of pool_a, which is assumed to be ≤ pool_b.
p_s = np.zeros(pool_a+1)
# reference: hypergeom.pmf(outcome, Total, hits, Draws, loc=0)
for s in np.arange(pool_a+1):
# p_sa is the probability that we'd get sa from the overlap (s), just in na draws of a
p_sa = hypergeom.pmf(np.arange(pool_a+1),pool_a,s,na)
# p_nab_given_sa is the probability of getting that nab, given sa
p_nab_given_sa = hypergeom.pmf(nab,pool_b,np.arange(pool_a+1),nb)
p_s[s] = np.dot(p_sa,p_nab_given_sa)
return p_s/np.sum(p_s)
def e_overlap_unequal(na,nb,nab,pool_a,pool_b):
# TODO. Code expects that pool_b > pool_a...
p_s = p_overlap_unequal(na,nb,nab,pool_a,pool_b)
return np.dot(np.arange(pool_a+1),p_s)
def incremental_sample_nab(s,na_min=30,na_max=50):
# total repertoire size
pool = 60
# preallocate the array to be returned
nabs = np.zeros(pool+1)
# represent the items in the set by ints from 0 to 60, and from 60-s to 120-s
# In this way, these sets will share s items
repertoire_a = np.arange(60)
repertoire_b = np.arange(60-s,120-s)
# Create random samples from each repertoire
sampled_a = np.random.choice(repertoire_a,size=na_min,replace=False)
sampled_b = np.random.choice(repertoire_b,size=na_min,replace=False)
# Set Diff to get the items that WEREN'T sampled
unsampled_a = np.setdiff1d(repertoire_a, sampled_a)
unsampled_b = np.setdiff1d(repertoire_b, sampled_b)
# Compute the length of the intersection
nabs[na_min] = len(np.intersect1d(sampled_a,sampled_b,assume_unique=True))
# Now shuffle the unsampled items so that choosing the last item
# from each array is equivalent to drawing from the ordered array at random
np.random.shuffle(unsampled_a) #inplace shuffle
np.random.shuffle(unsampled_b) #inplace shuffle
# Iterate over values of na from 31 up to 50, incrementally gaining one more
# sample each time.
for na in np.arange(na_min+1,na_max+1):
# Sample 1 more from a
sampled_a = np.append(sampled_a,unsampled_a[-1])
unsampled_a = np.delete(unsampled_a,-1)
# Sample 1 more from b
sampled_b = np.append(sampled_b,unsampled_b[-1])
unsampled_b = np.delete(unsampled_b,-1)
# Compute new intersection size
nabs[na] = len(np.intersect1d(sampled_a,sampled_b,assume_unique=True))
return nabs
# Calculate arrays for steps
shat = np.load('shat_60.npy')
planted_new = []
recovered_new = []
recovered_pts_new = []
pool=60
reps=4
# Temps
x1 = 30
# Calculate list for 30-50 steps
for i in range(0, 7, 1):
recovered = np.zeros([6,reps,pool+1])
planted = np.zeros([6,reps,pool+1])
recovered_pts = np.zeros([6,reps,pool+1])
# Calculate for 30-32, 33-35, 36-38, 39-41, 42-44, 45-47, 48-50
nas = [x1, x1+1, x1+2]
for idxa,na in enumerate(nas):
nb = na
for s in np.arange(0,pool+1,1):
for rep in range(3):
# ------------------------- CHECK ME OUT -----------------------------
# ??????????? Change code to no longer parameterized na,nb ???????????
nabs = incremental_sample_nab(s)
# ??????????? nabs[na] is the number of items shared between the two sets when na samples are drawn from each ???????????
nab = nabs[na]
planted[idxa,rep,s] = s
recovered[idxa,rep,s] = e_overlap(na,nb,nab)
recovered_pts[idxa,rep,s] = 2*nab/(na+nb)
# Flatten arrays
for index in range(3):
planted_new.append( planted[index,:,:].flatten() )
recovered_new.append( recovered[index,:,:].flatten() )
recovered_pts_new.append( recovered_pts[index,:,:].flatten() )
# Enlarge the sample size
x1 = x1 + 3
# Build and show figure
z = np.zeros(60)
d = np.arange(1,60)
data = []
trace0 = go.Scatter(x = d ,
y = d,
line = dict(width=1, color = 'rgb(0,0,0)'),
name = 'Reference',
showlegend = False,
hoverinfo = 'skip')
for index in range(len(planted_new)):
trace1 = go.Scatter(x=planted_new[index],
y=recovered_new[index],
mode='markers',
name = 'BRO',
visible = False,
marker=dict(color='rgb(255,84,0)'),
hovertemplate = "%{y: .3f}")
trace2 = go.Scatter(x=planted_new[index],
y=pool*recovered_pts_new[index],
mode='markers',
name = ' S',
visible = False,
marker_symbol = "x",
marker=dict(color='rgba(0,171,255, 1)'),
hovertemplate = "%{y: .3f}")
data.append(trace1)
data.append(trace2)
data.append(trace0)
# Toggle first trace to be visible
data[0]['visible'] = True
data[1]['visible'] = True
# Create steps and slider
steps = []
for i in range(0, len(planted_new)):
step = dict(
method = 'restyle',
args = ['visible', [False]*43],
label = str(i+30))
step['args'][1][i*2] = True
step['args'][1][i*2+1] = True
step['args'][1][-1] = True
steps.append(step)
sliders = [dict(
active = 0,
currentvalue = {'prefix':
"<i>Sample size</i>: <b>"},
pad = {"t": 80, "b": 10},
steps = steps
)]
# Setup the layout of the figure
layout = go.Layout(plot_bgcolor='rgb(255,255,255)',
xaxis_title="True overlap s",
yaxis_title='Estimated overlap \u015D',
yaxis=dict(showspikes = True),
legend=dict(x=.85,
y=.1,
bordercolor="Gray",
borderwidth=1),
width = 650,
height = 680,
hovermode = 'x unified',
sliders = sliders,
font = dict(size = 13),
margin=go.layout.Margin(l=50,
r=50,
b=60,
t=35))
# Show plot
fig_enhanced = dict(data=data, layout=layout)
plot(fig_enhanced, filename = 'fig3_enhanced.html', config = config)
display(HTML('fig3_enhanced.html'))